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1 Introduction

The purpose of this note is to explain in a detailed step-by-step way how the different algorithms used in
the luminosity analysis were derived. It also discusses possible systematic errors that are introduced in
the analysis when these algorithms are used.

2 The Event OR Algorithm

2.1 Derivation of the algorithm

In order to obtain the probability functions for different classes of events, one can start with defining four
inclusive efficiencies (or probabilities) for detecting different types of events when there is exactly one
interaction per bunch crossing:

εA The efficiency for detecting interactions with at least one hit on side A
εC The efficiency for detecting interactions with at least one hit on side C
εAND The efficiency for detecting interactions with at least one hit on side A and C
εOR The efficiency for detecting interactions with at least one hit on side A or C

(1)

With these efficiencies one has εA + εC = εAND + εOR. Another way of describing the single interaction
events is by a set of four exclusive probabilitites:

p10 = εA − εAND The probability of detecting an interaction in A, but not in C
p01 = εC − εAND The probability of detecting an interaction in C, but not in A
p11 = εAND The probability of detecting an interaction in both modules
p00 = 1− εOR The probability of not detecting an interaction in either A or C

(2)

The relationship between these probabilities is: p10 + p01 + p11 + p00 = 1. After defining efficien-
cies/probabilities for a single interaction it is easy to define the detection probabilities for multi-interaction
events. Under the assumption that the single interaction probabilities do not change when there are sev-
eral interactions taking place in a short time period, one obtains the following probability for not detecting
an event if there is exactly n interactions:

P00(n) = pn
00 = (1− εOR)n (3)

Now assume that n is a Poissonian distributed quantity with an average value called μ . The proba-
bility to get no hits in both detectors as a function of μ is then:

P00(μ) =
∞

∑
n=0

(1− εOR)n e−μ μn

n!
= e−εORμ (4)

since the Maclaurin series expansion is given by

ex =
∞

∑
n=0

xn

n!
(5)

The probability to have a single side trigger with at least one recorded hit in a bunch crossing with
on average μ interactions is thus

POR(μ) = 1−P00(μ) = 1− e−εORμ (6)
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By defining two new variable μvis ≡ εμ and σvis ≡ εσinel it is trivial to see that the bunch crossing
luminosity (LBC) can be obtained from

LBC =
μ

σinel
=

μvis

σvis
(7)

and that one can get the following relationship between the measured number of OR events (NOR) and μ :

NOR
NBC

= 1− e−εORμ = 1− e−μvis (8)

where NBC is the number of bunch crossings that occurred during the measurement of NOR. This
expression is plotted in Figure 1 and compared to a simulation in which Monte Carlo data has been piled
up to get different μ values.

Solving for μvis in terms of the event-counting rate yields:

μvis = − ln
(

1− NOR
NBC

)
(9)

and the luminosity for one bunch crossing is now given by

LBC =
− ln

(
1− NOR

NBC

)
σvis

(10)

A Taylor expansion of the logarithms gives

ln

(
1− NOR

NBC

)
= −

∞

∑
n=1

(NOR
NBC

)n

n
(11)

and so to first order in the expansion one gets

μvis =
NOR

NBC
(12)

With other words, a linear relationship between the luminosity and the number of events per BC is
obtained if NOR/BC = NOR

NBC
is much smaller than one.

2.2 Calibration of the Event OR Algorithm

In the VDM scans the luminosity at the peak of the scan distributions (Lpeak) is obtained from the widths
of these distributions and the beam currents. The rate of events at the peak (Npeak

OR/BC) is also measured and
from these two values it is possible to obtain a calibration constant, σOR, which is the visible inelastic
cross section (σvis ≡ εσinel = σOR) when the OR method is being used:

σOR =
− ln

(
1− NOR

NBC

)
L peak

(13)

If Npeak
OR/BC (or μ peak) is << 1 during the VDM scan, then a linear approximation can also be used to

obtain the visible cross section:

σOR = NOR/BC

L peak (14)

The final expression for the luminosity after calibration is thus:
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LBC =
− ln

(
1− NOR

NBC

)
σOR

(15)
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Figure 1: Comparison of probability functions with simulated data. The lines are from the equations
and the points from the data. The LUCID OR-counting method is using Equation 8, while for LUCID
AND-counting Equation 25 is used.

3 The Event AND Algorithm

3.1 Derivation of the algorithm

The same strategy can be used to obtain the probability to have a coincidence trigger. The first step is to
note that the probability to have a coincidence event in exactly one interaction is

p11 = 1− (p00 + p10 + p01) (16)

The second step is to calculate what the probability is for exactly n interactions, P11(n). Under the
assumption that the probabilities to observe a single interaction is the same also in multi-interaction
events one has:

P11(n) = 1− (P00(n)+P10(n)+P01(n)) (17)

P00(n) is trivial since:
P00(n) = pn

00 (18)
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The terms P10(n) and P01(n) are a bit more complicated since one has to take into account all permu-
tations of k interactions detected in module A (C) and n− k interactions not detected in any module:

P10(n) =
n

∑
k=1

pk
10 pn−k

00

(
n
k

)
= (p10 + p00)n − pn

00 (19)

P01(n) =
n

∑
k=1

pk
01 pn−k

00

(
n
k

)
= (p01 + p00)n − pn

00 (20)

These expressions can now be used to obtain P11(n):

P11(n) = 1− (P00(n)+P10(n)+P01(n)) = 1− (pn
00 +(p10 + p00)n − pn

00 +(p01 + p00)n − pn
00) (21)

The final third step is to compute the probability if there are on average μ interactions in a bunch
crossing by assuming a Poisson distribution:

P11(μ) = 1− (
∞

∑
n=0

(p10 + p00)n e−μ μn

n!
+

∞

∑
n=0

(p01 + p00)n e−μ μn

n!
−

∞

∑
n=0

pn
00

e−μ μn

n!
) (22)

P11(μ) = e−μ(1−p10−p00) + e−μ(1−p01−p00) − e−μ(1−p00) (23)

After substituting the probabilities for efficiencies one gets:

PAND(μ) = e−μεA + e−μεC − e−μ(εA+εC−εAND) (24)

Also in this case one can estimate the probability from the measured number of events (NAND):

NAND

NBC
= 1− (e−μεA + e−μεC − e−μ(εA+εC−εAND)) (25)

This expression is plotted in Figure 1 and compared to a simulation.

A Maclaurin expansion of the exponentials to first order gives:

NAND

NBC
= μεAND = μvis (26)

and so for small μ values one again gets a linear relationship between the number of events and μ .

Equation 25 can be simplified in another way if one assumes that εA = εC since in this case εA =
εC = (εOR + εAND)/2 and εA + εC − εAND = εOR:

NAND

NBC
= 1−2e−μ(εOR+εAND)/2 + e−μεOR (27)

By again introducing μvis ≡ μεAND and the two visible cross sections σOR ≡ εORσinel and σAND ≡
εANDσinel one gets

NAND

NBC
= 1−2e−( σOR

σAND
+1)μvis/2 + e−

σOR
σAND

μvis (28)

Even this simplified equation cannot be inverted analytically. The inverted distribution can, however,
be turned into a look-up table or fitted with a third order polynomial:

μvis ≈ α1
NAND
NBC

+ α2(NAND
NBC

)2 + α3(NAND
NBC

)3 (29)
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where α1, α2 and α3 are fitting constants. The luminosity is as previously given by:

LBC =
μvis

σAND
(30)

3.2 Calibration of the Event AND Algorithm

The VDM calibration for the AND case is more difficult than the OR case since there are two calibration
constants in Equation 28 and the equation cannot be inverted. An iterative procedure has to be used
where μvis at the peak of the VDM scan is calculated from Equations 28 and 29 using σAND from a
Monte Carlo simulation or from a previous VDM scan. A new σAND value can then be calculated from

σAND = μ peak
vis

L peak
(31)

A second iteration using this new value of σAND can be put into Equation 28 which can be inverted
to Equation 29 which then can be used to calculate a new value of σAND using again Equation 31.
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8 Event Counting OR 
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Figure 2: The difference bewteen the simulated data and Equation 8 and 25 when the LUCID threshold
is increased to 50 photoelectrons.

4 Systematic uncertainties in the event counting algorithms

The shapes of Equations 8 and 25 are shown in Figure 1. As μ increases, the number of events per bunch
crossing will eventually become close to one. When this happens the methods become unreliable because
a small change in counting rate then translates into a large change in luminosity. This behavior of the
event counting methods is called ”saturation” because the event rate cannot increase further when there
is at least one detected interaction for every bunch crossing. A method with a high efficiency to detect a
single interaction will saturate at a lower μ than a method with a higher efficiency. The saturation effect
is one reason why hit-counting methods have been considered as alternative methods to event counting
since they could in principle extend the range of the μ-measurement without saturation to higher values.

A comparison has also been made of the probability functions discussed above with simulated events
that were generated by Pythia MC09 and then passed through the full ATLAS detector simulation. These
events have been piled up according to a Poissonian distribution to give samples with different average
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μ-vaules. If this pile-up results in a multi-interaction event, all the signals from the particles of the
individual pp-interactions are added up channel-by-channel to produce a realistic pile-up event. The OR
and AND selection is then made on these simulated pile-up events and the event rate is estimated. The
difference between these simulated events and the Equations 8 and 25 is less than 2% for all cases and
are typically less than 1%.

The good agreement between the simulated data and the probability functions means that it is correct
to assume, as it was done above, that the detection efficiency for an individual pp-interaction is the same
if there is a single or several interactions in a bunch crossing. That this is not an assumption that is
always true can be seen in Figure 2. It shows the same difference between the probability function and
the simulated LUCID data as in the previous figure but now with an increased discriminator threshold.
A particle going through the center of a LUCID tube typically gives a signal that corresponds to 100
photo electrons and the discriminator threshold that has been used corresponds to 15 photo electrons.
This threshold has been increased in the simulation in Figure 2 to 50 photo electrons and then there
are deviations from the probability functions of up to 7% . The reason for this is that there are many
secondary particles that do not go through the center of the LUCID tubes and which therefore produce a
continuous spectrum of signals with a pulse height from zero up to several hundred photo electrons. The
particles that give a signal below the discriminator threshold in one pp-interaction are able to pile-up and
give a signal above threshold in multi-interaction events. This effect is called migration since particles
with low pulse height are said to ”migrate” to a larger pulseheight in multi-interaction events.

Another source of systematic errors is caused by the numerical inversion of the probability functions.
When a third-degree polynomial fit is used as in Equation 29 this typically introduces a maximum error
of around 1% as long as the μ-range is limited to less than 5. Two fits in different μ-ranges or look-up
tables can be used to obtain a higher precision.

5 The HIT OR Algorithms

5.1 Derivation of the algorithm

The average number of pp collisions per event (μ) can in OR mode also be calculated from the ratio
between the average number of detected particles per bunch crossing (Npart/BC) and those detected in
one pp collision (Npart/pp):

μ =
Npart/BC

Npart/pp
(32)

The average bunch luminosity is in this case given by

LBC =
μ

σinel
=

Npart/BC

σinelNpart/pp
(33)

After a calibration that has yielded σinelNpart/pp it is thus possible to calculate the luminosity from a
measurement of the average number of detected particles per bunch crossing.

The LUCID detector counts hits and not particles and at high μ there is a significant probability that
several particles go through one tube but produces only one hit. Equation 32 has to be corrected for this
saturation effect and that can be done under two assumptions:
1. The particles are distributed with an equal probability over all tubes;
2. The number of particles that go through a tube follows a Poissonian distribution.
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If Npart/pp is the total number of detected particles in one pp-interaction and Ntubes is the total
number of tubes in the detector (30) then the average number of detected particles per tube is simply
Npart/pp/Ntubes. The assumption that the particles in a tube are distributed according to a Poissonian,
means that the number of hits can be written as the product of the number of tubes times the probability
to have at least one detected particle in a tube (namely a hit):

Nhits/pp = Ntubes

[
1− e

− Npart/pp
Ntubes

]
(34)

Equation 34 can be inverted to turn the number of hits into particles:

Npart/pp = −Ntubes ln

(
1− Nhits/pp

Ntubes

)
(35)

Note that Equation 35 holds also for bunch crossings with several interactions:

Npart/BC = −Ntubes ln

(
1− Nhits/BC

Ntubes

)
(36)

and so one can obtain μ from a measurement of Nhits/BC by using the following relationship:

μ =
Npart/BC

Npart/pp
=

ln
(

1− Nhits/BC

Ntubes

)
ln

(
1− Nhits/pp

Ntubes

) (37)

One problem with this expression is that if the number of hits per BC is equal to the number of tubes,
the luminosity becomes infinitely large. It is therefore necessary to take care of these cases in some way.

A Taylor expansion of the logarithms gives

ln

(
1− Nhits

Ntubes

)
= −

∞

∑
n=1

( Nhits
Ntubes

)n

n
(38)

and so to first order in the expansion one gets

μ =
Npart/BC

Npart/pp
=

Nhits/BC

Nhits/pp
(39)

With other words, if the ratio of the number of hits to the number of tubes is small then the logarith-
mic formula which takes care of the problem of saturation is not needed.

The luminosity for one bunch crossing, including saturation effects, is then calculated from Equa-
tion 37:

LBC =
μ

σinel
=

ln
(

1− Nhits/Bc

Ntubes

)
σinel ln

(
1− Nhits/pp

Ntubes

) (40)

5.2 Calibration of the Hit OR Algorithms

In the VDM scans the luminosity at the peak of the scan distributions (Lpeak) is obtained from the widths
of these distributions and the beam currents. The rate at the peak (Npeak

hits/BC) is also measured and from
these two values it is possible to obtain a calibration constant that has barn as unit and which therefore is
called an effective visible cross section (σhits

vis ).
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σ hits
vis = −σinel ln

(
1− Nhits/pp

Ntubes

)
=

ln

(
1− Npeak

hits/BC

Ntubes

)
L peak (41)

The results of the VDM scan during the spring is σhits
vis = 3.80±0.02mb.

This visible cross section can be inserted into Equation 40 and the average luminosity per BC can
now be calculated using:

LBC =
μ

σinel
=

− ln
(

1− Nhits/BC

Ntubes

)
σ hits

vis

(42)

Another way of doing the calibration is to use the linear approximation as a starting point:

LBC =
Nhits/BC

σinelNhits/pp
(43)

A calibration constant called Kcal is again measured from the rate and luminosity at the peak of the
scan distributions:

Kcal = σinelNhits/pp =
N peak

hits/BC

L peak (44)

The results of the VDM scan during the spring is Kcal = 113.3mb.

This calibration constant can then be inserted into Equation 40 and one obtains

LBC =
ln

(
1− Nhits/BC

Ntubes

)
σinel ln

(
1− Kcal

σinelNtubes

) (45)

The denominator contains not only the calibration constant but also the inelastic cross section which
is not determined in the VDM scans. So a disadvantage with this method is that a value for the inelastic
cross section (from Monte Carlo calculations) have to be used when the luminosity is calculated.

However, another Taylor expansion gives:

σinel ln

(
1− Kcal

σinelNtubes

)
= −σinel

∞

∑
n=1

( Kcal
σinelNtubes

)n

n
(46)

which means that to first order the inelastic cross section is cancelled out in the calculation:

σinel ln

(
1− Kcal

σinelNtubes

)
= − Kcal

Ntubes
(47)

That the dependence on the simulation is small can also be seen if one calculate σhits
vis using the

inelastic cross section from Pythia (71.5 mb) and Phojet (76.2 mb). The result is σhits
vis = 3.88(3.87) for

Pythia (Phojet). These numbers are, however, both 2% higher than the value of 3.80 that was obtained in
the VDM scan.

9



μ

-210 -110 1 10

N
um

be
r 

of
 d

et
ec

te
d 

ev
en

ts
 p

er
 B

X

-210

-110

1

10

PYTHIA MC09
 = 7 TeVs

ATLAS Preliminary

LUCID Hit OR

μ
-210 -110 1 10

D
ev

ia
tio

n 
[%

]

-5

0

5

Figure 3: Comparison of hit functions with simulated data. The line is from Equation 37 after it has been
inverted and the points are from simulated data.

6 Systematic uncertainties in the Hit OR counting algorithm

The line in Figure 3 shows Equation 37 after it has been inverted, i.e., it shows

Nhits/BC = Ntubes
(
1− e−μKcalib

)
(48)

where Kcalib is a calibration constant give by:

Kcalib = ln

(
1− Nhits/pp

Ntubes

)
(49)

The main reason for the large difference between Equation 48 and the Monte Carlo data in Figure 3
is most likely due to the assumption that the number of particles in LUCID are following a Poisson distri-
bution. This assumption is fundamental when Equation 34 is used to derive the logarithmic formula that
is used to measure the luminosity with the LUCID Hit-OR method. We know that the hit distributions
in both real and simulated data are not Poisson distributed. This does not prove that the particle distri-
butions are not following a Poisson but it is a clear indication that this is the case. So far we have not
verified the Poisson assumption with simulated data. Another argument against this assumption is that
LUCID detects a mixture of single and double diffractive events as well as inelastic events. We know
that these different processes creates different hit distributions with different average number of hits. A
sum of three Poisson distributions will not necessarily result in another distribution that is Poissonian.

The hit method will in addition suffer from the same migration effects that were discussed above for
the event counting methods. How much of the discrepancy in Figure 3 is due to migration and how much
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is due to the Poissonian assumption is at present not known.

Another complication is due to the fact that Equation 34 is true only for one bunch crossing. One
should therefore in principle use Equation 40 first on individual bunch crossings and then do the average
and not use a value of Nhits/BC that is obtained by averaging over all bunch crossing during a luminosity
block. One should with other words use the following expression when calculating the luminosity:

LBC =
1

NBc
·

∑NBC
i=1 ln

(
1− Nhits(i)

Ntubes

)
σinel ln

(
1− Nhits/pp

Ntubes

) (50)

This has, however, not been done in ATLAS because all rates are integrated over a luminosity block
and then transformed to averaged rates that are put into Equation 37. This problem could in principle be
corrected for in the LUMAT card but it has not been done.

In conclusion one can say that the formula used in the Hit-Or case is derived using very questionable
assumptions and one should not be surprised that the data corrected with Equation 40 do not give a
precise determination of the luminosity.

7 The HIT AND Algorithms

7.1 Derivation of the algorithm

In coincidence mode, there are two possibilities to detect an event with multiple interactions. A true
coincidence occurs when at least one interaction is detected simultaneously in both modules. A fake
coincidence occurs when no interaction is detected simultaneously in both modules, but at least two
interactions are separately detected in different modules.

In coincidence mode, the average number of detected particles in events with n interactions is the
sum of two contributions:

1. the event contains at least one interaction which is detected in both modules, together with any
number of interactions which are only detected in module A and not in C, and vice versa;

2. the event contains 0 interactions detected in both modules, together with at least one interaction
which is only detected in module A and one which is only detected in module C.

The average number of particles corresponding to Terms I and II is the sum of the probability of each
configuration times the corresponding number of detected interactions, times the number of particles per
detected interaction.

Definitions Four exclusive definitions of average number of particles in the whole detector per detected
interaction are used:

N01
part/pp∗ no. of particles per detected interaction in A if there are no hits in C

N10
part/pp∗ no. of particles per detected interaction in C if there are no hits in A

N11
part/pp∗ no. of particles per detected interaction if there are hits in both modules

NXOR
part/pp∗ no. of particles per detected interaction if there are hits in one module but not both

(51)

Interactions that did not produce any particles in LUCID are not used in these averages. This is sym-
bolised with a *. These averages will by definition be large than one (or two in the case of a coincidence
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requirement).

The probability of each configuration is evaluated by using the exclusive probabilities to detect an
interaction defined above (p01, p10, p11 and p00), together with the exlusive probability to detect an
interaction in one module, but not in both (pXOR = p01 + p10). One can define a second set of average
number of particles that are averaged also over those interactions that do not have particels in LUCID:

N01
part/pp = p01N01

part/pp∗ no. of particles in A if there are no hits in C

N10
part/pp = p10N10

part/pp∗ no. of particles in C if there are no hits in A

N11
part/pp = p11N11

part/pp∗ no. of particles if there are hits in both modules

NXOR
part/pp = pXORNXOR

part/pp∗ no. of particles if there are hits in one module but not both

(52)

Given that p01N01
part/pp∗ is the number of particles registered in the whole detector when the inter-

action is detected in module A only and p10N10
part/pp∗ is the number of particles registered in the whole

detector when the interaction is detected in module C only, the sum of these Terms gives the number of
particles registered in the whole detector when the interaction is detected in module A or in module C
but not in both (pXORNXOR

part/pp∗):

pXORNXOR
part/pp∗ = p01N01

part/pp∗+ p10N10
part/pp∗ (53)

One can also introduce a set of inclusive average number of particles if there are particles in LUCID:

NA
part/pp∗ no. of particles per interaction detected in A (regardless of C)

NC
part/pp∗ no. of particles per interaction detected in C (regardless of A)

NAND
part/pp∗ no. of particles per interaction detected in both modules

(54)

And another inclusive set where one has averaged also over interactions with no particles in LUCID:

NA
part/pp = εANA

part/pp∗ no. of particles per interaction in A (regardless of C)

NC
part/pp = εCNC

part/pp∗ no. of particles per interaction in C (regardless of A)

NAND
part/pp = εANDNAND

part/pp∗ no. of particles per interaction in both modules
(55)

Term I Suppose n interactions occurred in an event, Term I can be written as:

I =
n

∑
k=1

pk
11

(
n
k

)[
n−k

∑
l=0

pl
XOR(1− pXOR − p11)n−k−l

(
n− k

l

)]
[kN11

part/pp∗+ lNXOR
part/pp∗] (56)

The first contribution consists of k interactions detected in both modules, l of the remaining n− k
interactions detected in only one module and the remaining n− k− l interactions undetected.

The probability of detecting k interactions in both modules is pk11. The probability of detecting
l interactions in only one module is pl

XOR. The probability of not detecting n− k − l interactions is
(1− pXOR − p11)n−k−l .

Binomial factors are used to account for all permutations of k out of n interactions and l out of n− k
interactions.

The average number of particles given by k interactions detected in both modules is kN11
part/pp∗, while

that of l interactions detected in one module is lNXOR
part/pp∗.
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Term II Suppose n interactions occurred in an event, Term II can be written as:

II =
n

∑
k=1

pk
01

(
n
k

)[
n−k

∑
l=1

pl
10 pn−k−l

00

(
n− k

l

)]
[kN01

part/pp∗+ lN10
part/pp∗] (57)

The second contribution consists of k interactions detected in module A but not in C, l of the re-
maining n− k interactions detected in module C but not in A, and the remaining n− k− l interactions
undetected.

The probability of detecting k interactions in module A is pk01. The probability of detecting l interac-
tions in module C is pl

10. The probability of not detecting n− k− l interactions is pn−k−l
00 .

Binomial factors are used to account for all permutations of k out of n interactions and l out of n− k
interactions.

The average number of particles given by k interactions detected in both modules is kN01
part/pp∗, while

that of l interactions detected in one module is lN10
part/pp∗.

Sum over l The l-sums in Equations 56 and 57 can be evaluated by means of the binomial theorem:

kN11
part/pp∗

n−k

∑
l=0

pl
XOR (1− pXOR − p11)n−k−l

(
n− k

l

)
= kN11

part/pp∗(1− p11)n−k (58)

NXOR
part/pp∗

n−k

∑
l=0

l pl
XOR (1− pXOR − p11)n−k−l

(
n− k

l

)
= NXOR

part/pp∗(n− k)pXOR(1− p11)n−k−1 (59)

kN01
part/pp∗

n−k

∑
l=1

pl
10 pn−k−l

00

(
n− k

l

)
= kN01

part/pp∗
[
(p00 + p10)n−k − pn−k

00

]
(60)

N10
part/pp∗

n−k

∑
l=1

l pl
10 pn−k−l

00

(
n− k

l

)
= N10

part/pp∗(n− k) p10(p00 + p10)n−k−1 (61)

Sum over k Equations 58-61 are used to evaluate the k-sums in Equations 56 and 57 by means of the
binomial theorem:

N11
part/pp∗

n

∑
k=1

kpk
11(1− p11)n−k

(
n
k

)
= N11

part/pp∗p11n (62)

NXOR
part/pp∗pXOR

n

∑
k=1

npk
11(1− p11)n−k−1

(
n
k

)
= NXOR

part/pp∗pXORn

[(
1

1− p11

)
− (1− p11)n−1

]
(63)

−NXOR
part/pp∗pXOR

n

∑
k=1

kpk
11(1− p11)n−k−1

(
n
k

)
= −NXOR

part/pp∗pXORn
p11

1− p11
(64)

N01
part/pp∗

n

∑
k=1

kpk
01(p00 + p10)n−k

(
n
k

)
= N01

part/pp∗p01n(p00 + p01 + p10)n−1 (65)

−N01
part/pp∗

n

∑
k=1

kpk
01 pn−k

00

(
n
k

)
= −N01

part/pp∗p01n(p00 + p01)n−1 (66)
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N10
part/pp∗p10

n

∑
k=1

npk
01(p00 + p10)n−k−1

(
n
k

)
= N10

part/pp∗p10n

[
(1− p11)n

p00 + p10
− (p00 + p10)n−1

]
(67)

−N10
part/pp∗p10

n

∑
k=1

kpk
01(p00 + p10)n−k−1

(
n
k

)
= −N10

part/pp∗p10np01
(1− p11)n−1

p00 + p10
(68)

Sum of Terms I and II Using Equation 53, the sum of Equations 62-68 gives:

I + II = N11
part/pp∗p11n+N01

part/pp∗p01n
[
1− (p00 + p01)n−1]+N10

part/pp∗p10n
[
1− (p00 + p10)n−1] (69)

Poissonian sum The average number of particles per event in coincidence mode is given by the con-
volution of Equation 69 with a Poissonian of average μ :

NAND
part/BC =

∞

∑
n=0

(I + II)
e−μ μn

n!
(70)

Given the relations:

∞

∑
n=0

n
e−μ μn

n!
= μ and

∞

∑
n=0

kn

n!
= ek (71)

Equation 70 becomes:

NAND
part/BC = N11

part/pp∗p11μ +N01
part/pp∗p01μ

[
1− e−μ(p10+p11)

]
+N10

part/pp∗p10μ
[
1− e−μ(p01+p11)

]
(72)

Using the following relations:

N01
part/pp∗p01 = NA

part/pp∗εA −NAND
part/pp∗εAND = NA

part/pp−NAND
part/pp

N10
part/pp∗p10 = NC

part/pp∗εC −NAND
part/pp∗εAND = NC

part/pp−NAND
part/pp

(73)

Equation 72 can be written as:

NAND
part/BC = μNAND

part/pp + μ
(

NA
part/pp−NAND

part/pp

)
(1− e−μεC)

+μ
(

NC
part/pp−NAND

part/pp

)
(1− e−μεA)

(74)

The number of particles per event can be extracted from the number of hits per event as it was done
for the single side mode:

Npart/BC = −Ntubes ln

(
1− Nhits/BC

Ntubes

)
(75)

Once again the calculation has to be done for each BC and then averaged.
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