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1 Introduction

The purpose of thisnote isto explain in adetailed step-by-step way how the different algorithms used in
the luminosity analysis were derived. It also discusses possible systematic errors that are introduced in
the analysis when these algorithms are used.

2 TheEvent OR Algorithm

2.1 Derivation of the algorithm

In order to obtain the probability functions for different classes of events, one can start with defining four
inclusive efficiencies (or probabilities) for detecting different types of events when there is exactly one
interaction per bunch crossing:

€A The efficiency for detecting interactions with at least one hit on side A

e The efficiency for detecting interactions with at least one hit on side C
eanp | The€efficiency for detecting interactions with at least one hit on side A and C
€OR The efficiency for detecting interactions with at least one hit on side A or C

D)

With these efficiencies one has ex + ec = eanp + €or. Another way of describing the single interaction
eventsis by a set of four exclusive probabilitites:

Pwo | =ea—eanp | The probability of detecting an interaction in A, but not in C
Por | =& —éeanp | The probability of detecting an interaction in C, but not in A
P11 | = €anD The probability of detecting an interaction in both modules
Poo | =1—¢€or The probability of not detecting an interaction in either A or C

(2)

The relationship between these probabilities is: pio + Po1 + P11 + Poo = 1. After defining efficien-
cies/probabilities for asingleinteraction it iseasy to define the detection probabilities for multi-interaction
events. Under the assumption that the single interaction probabilities do not change when there are sev-
eral interactions taking place in ashort time period, one obtains the following probability for not detecting
an event if there is exactly n interactions:

Poo(n) = pgo = (1 —€or)" ©)

Now assume that n is a Poissonian distributed quantity with an average value called u. The proba-
bility to get no hits in both detectors as a function of u isthen:

oo _

Ro(i1) = ¥, (1 eor)"—F- = e-von @
n=0 .

since the Maclaurin series expansion is given by

gy X (5)

|
=0 n

The probability to have a single side trigger with at least one recorded hit in a bunch crossing with
on average u interactions is thus

POR(‘U) =1-— Poo([.t) —=1— g forH (6)
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By defining two new variable u"'s = ey and ois = £0ing it is trivial to see that the bunch crossing
luminosity (Zgc) can be obtained from

7 P ey 7
Oinel Ovis

and that one can get the following relationship between the measured number of OR events (Nbr) and u:

N_(;g —1— @ €orRl — 1 _ @ Mis (8)

where Ngc is the number of bunch crossings that occurred during the measurement of Nog. This
expression is plotted in Figure 1 and compared to a simulation in which Monte Carlo data has been piled
up to get different u values.

Solving for s in terms of the event-counting rate yields:

s = —In(1- =) 9)
and the luminosity for one bunch crossing is now given by
—In(1— Ner
Loc = ~n(1-3g) (10)
Ovis
A Taylor expansion of the logarithms gives

In <1—M> i NG (12)

and so to first order in the expansion one gets

N
Hyvis = N—OR (12)
BC

With other words, alinear relationship between the luminosity and the number of events per BC is
obtained if Nog/sc = N& is much smaller than one.

2.2 Calibration of the Event OR Algorithm

Inthe VDM scans the luminosity at the peak of the scan distributions (.#P%) is obtained from the widths

of these distributions and the beam currents. The rate of events at the peak (I\@ gc) 1S also measured and
from these two values it is possible to obtain a calibration constant, g, WhICh is the visible inelastic
Cross section (6yis = €0ing = oor) When the OR method is being used:

—_In(1—Nor
Gon— ”Ef peawksc) (13)
If NPEK  (or uPeK) is < < 1 during the VDM scan, then alinear approximation can also be used to

OR/BC_ _
obtain the visible cross section:

OOR = —p% = (24)
The final expression for the luminosity after calibration is thus:
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—In(1— N
N
Lo = —<GOR BC) (15)
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Figure 1. Comparison of probability functions with ssmulated data. The lines are from the equations
and the points from the data. The LUCID OR-counting method is using Equation 8, while for LUCID
AND-counting Equation 25 is used.

3 TheEvent AND Algorithm

3.1 Derivation of the algorithm

The same strategy can be used to obtain the probability to have a coincidence trigger. Thefirst step isto
note that the probability to have a coincidence event in exactly one interaction is

p11 = 1— (Poo+ P10+ Po1) (16)

The second step is to calculate what the probability is for exactly n interactions, R1(n). Under the
assumption that the probabilities to observe a single interaction is the same also in multi-interaction
events one has:

P11(n) = 1— (Poo(n) + Pro(n) + Poz(N)) (17)
Poo(Nn) istrivial since:
Poo(N) = poo (18)



Theterms Pp(n) and Py (n) are abit more complicated since one has to take into account all permu-
tations of k interactions detected in module A (C) and n— k interactions not detected in any module:

Pro(n z o Py < > = (P10 + Poo)" — Poo (19

Pl Z P P < > = (Po1+ Poo)" — Plo (20)
These expressions can now be used to obtain R1(n):

P11(n) = 1 — (Poo(N) + Pro(n) + Poa(n)) = 1 — (pgo + (P10 + Poo)" — Poo + (Por + Poo)" — Poo)  (21)

The final third step is to compute the probability if there are on average u interactions in a bunch
crossing by assuming a Poisson distribution:

oo _

“un

n€
Pu(p) =1— (Y, (P10o+ Poo)" n—+2 Po1 + Poo)" 2 (22)
n=0 n=0
Py () = e #(1-Pro—Poo) | g H(1=Por—Poo) _ g=H (1~ Poo) (23)
After substituting the probabilities for efficiencies one gets:
Panp (1) = e HEA g Hee g H(eatec—eanp) (24)
Alsoin this case one can estimate the probability from the measured number of events (Mnp):
Nanp —1_ (e*llEA 4@ Hec _ efu(eAJrecfsAND)) (25)
Nac
This expression is plotted in Figure 1 and compared to a simulation.
A Maclaurin expansion of the exponentials to first order gives:
N
l\TND = UEAND = Hvis (26)
BC

and so for small u values one again gets a linear relationship between the number of events and pt.

Equation 25 can be simplified in another way if one assumes that e = ec since in this case ey =
&c = (€or+€anp)/2 and ea + &c — €anp = €oR!

NanD — 1 — g H(eor+emn)/2 4 g—HEOR (27)
Nac
By again introducing tiis = teanp and the two visible cross sections cor = €or0ing ad oanp =
€ANDOind One gets

NaAND
Nac
Even this simplified equation cannot be inverted analytically. The inverted distribution can, however,
be turned into alook-up table or fitted with athird order polynomial:

_ 126 (oo DM/ | o i M 28)

Lvis A al,\ll\?ND + o (NAND) +o3 (NAND )3 (29)
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where oy, o and oz are fitting constants. The luminosity is as previously given by:

OAND

3.2 Calibration of the Event AND Algorithm

The VDM calibration for the AND case is more difficult than the OR case since there are two calibration
constants in Equation 28 and the equation cannot be inverted. An iterative procedure has to be used
where s at the peak of the VDM scan is calculated from Equations 28 and 29 using ganp from a
Monte Carlo simulation or from a previous VDM scan. A new oanp Value can then be calculated from

peak
OAND = ﬂ'l(;"pzak (31)

A second iteration using this new value of oayp Can be put into Equation 28 which can be inverted
to Equation 29 which then can be used to calculate a new value of ganp USing again Equation 31.
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Figure 2: The difference bewteen the simulated data and Equation 8 and 25 when the LUCID threshold
isincreased to 50 photoel ectrons.

4 Systematic uncertaintiesin the event counting algorithms

The shapes of Equations 8 and 25 are shown in Figure 1. As u increases, the number of events per bunch
crossing will eventually become close to one. When this happens the methods become unreliable because
asmall change in counting rate then trandates into a large change in luminosity. This behavior of the
event counting methods is called " saturation” because the event rate cannot increase further when there
is at least one detected interaction for every bunch crossing. A method with a high efficiency to detect a
single interaction will saturate at alower p than a method with a higher efficiency. The saturation effect
is one reason why hit-counting methods have been considered as alternative methods to event counting
since they could in principle extend the range of the p-measurement without saturation to higher values.

A comparison has also been made of the probability functions discussed above with simulated events
that were generated by Pythia MC09 and then passed through the full ATLAS detector simulation. These
events have been piled up according to a Poissonian distribution to give samples with different average
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u-vaules. If this pile-up results in a multi-interaction event, all the signals from the particles of the
individual pp-interactions are added up channel-by-channel to produce aredistic pile-up event. The OR
and AND selection is then made on these simulated pile-up events and the event rate is estimated. The
difference between these simulated events and the Equations 8 and 25 is less than 2% for al cases and
aretypicaly less than 1%.

The good agreement between the simulated data and the probability functions means that it is correct
to assume, as it was done above, that the detection efficiency for an individual pp-interaction isthe same
if there is a single or severa interactions in a bunch crossing. That this is not an assumption that is
always true can be seen in Figure 2. It shows the same difference between the probability function and
the simulated LUCID data as in the previous figure but now with an increased discriminator threshold.
A particle going through the center of a LUCID tube typically gives a signal that corresponds to 100
photo electrons and the discriminator threshold that has been used corresponds to 15 photo e ectrons.
This threshold has been increased in the simulation in Figure 2 to 50 photo electrons and then there
are deviations from the probability functions of up to 7% . The reason for this is that there are many
secondary particles that do not go through the center of the LUCID tubes and which therefore produce a
continuous spectrum of signals with a pulse height from zero up to several hundred photo electrons. The
particles that give asignal below the discriminator threshold in one pp-interaction are able to pile-up and
give a signal above threshold in multi-interaction events. This effect is called migration since particles
with low pulse height are said to "migrate” to alarger pulseheight in multi-interaction events.

Another source of systematic errorsis caused by the numerical inversion of the probability functions.
When a third-degree polynomial fit is used as in Equation 29 this typically introduces a maximum error
of around 1% as long as the p-range is limited to less than 5. Two fits in different p-ranges or look-up
tables can be used to obtain a higher precision.

5 TheHIT OR Algorithms

5.1 Derivation of thealgorithm

The average number of pp collisions per event (1) can in OR mode also be calculated from the ratio
between the average number of detected particles per bunch crossing (Nigrt/sc) and those detected in
one pp collision (Nyart/pp):

Npart/BC (32)
Npart/pp
The average bunch luminosity isin this case given by

u Npart/Bc
Lo — — 33
Be Oind  Oind Npart/pp (33)

After acalibration that has yielded Gine Npart/pp it IS thus possible to calculate the luminosity from a
measurement of the average number of detected particles per bunch crossing.

The LUCID detector counts hits and not particles and at high u there is a significant probability that
severa particles go through one tube but produces only one hit. Equation 32 has to be corrected for this
saturation effect and that can be done under two assumptions:

1. The particles are distributed with an equal probability over al tubes;
2. The number of particles that go through atube follows a Poissonian distribution.



If Npart/pp 1S the total number of detected particles in one pp-interaction and Nuses is the total
number of tubes in the detector (30) then the average number of detected particles per tube is simply
Npart/pp/Ntues: The assumption that the particles in a tube are distributed according to a Poissonian,
means that the number of hits can be written as the product of the number of tubes times the probability
to have at |east one detected particle in atube (namely a hit):

_ Npart/pp
Nhits/pp = Ntubes [1 —€e Mubes ] (34)
Equation 34 can be inverted to turn the number of hitsinto particles:
Nhit
N/ = Nl (1 22 ) (@)
Note that Equation 35 holds also for bunch crossings with severa interactions:
Nhits/Bc
Npart/Bc = —NtupesIn (1— |tsl: > (36)
uoes
and so one can obtain u from a measurement of N,is/sc by using the following relationship:
Nrits/BC
N In 1 — —%
_ Npart/BC _ ( Neub ) 37)

Noart/pp I (1— W)
ubes

One problem with this expression is that if the number of hits per BC isequal to the number of tubes,
the luminosity becomes infinitely large. It istherefore necessary to take care of these cases in some way.

A Taylor expansion of the logarithms gives

Nhits ) - \N
In{ 1— =— ubes 38
( Ntubes rgl n ( )
and so to first order in the expansion one gets

_ Npart/BC . I\lhits/BC (39)

Npart/ pp - Nhits/ pp
With other words, if the ratio of the number of hits to the number of tubesis small then the logarith-
mic formula which takes care of the problem of saturation is not needed.

The luminosity for one bunch crossing, including saturation effects, is then calculated from Equa
tion 37:

_ Nhits/Be
In (1 Neubes )

u
ZLoc = = : (40)
s~ opain (1= z)

ubes

5.2 Calibration of the Hit OR Algorithms

Inthe VDM scans the luminosity at the peak of the scan distributions (.£P%) is obtained from the widths
of these distributions and the beam currents. The rate at the peak (Nj;. /BC) is also measured and from
these two values it is possible to obtain a calibration constant that has barn as unit and which therefore is
called an effective visible cross section (qS).



peak
In <1_ hits/BC)
. N : Ntubes
hits - _ Dhits/pp \

The results of the VDM scan during the spring is gfltS = 3.80+ 0.02mb.

This visible cross section can be inserted into Equation 40 and the average luminosity per BC can
now be calculated using:

.  Nhits/Be
gBC _ ‘LL _ In (1 . Neubes ) (42)
Cind ohits

VIS
Another way of doing the calibration isto use the linear approximation as a starting point:

N
Lo = hits/BC
Oinel Nhits/pp

A calibration constant called K.y is again measured from the rate and luminosity at the peak of the
scan distributions:

(43)

peak
I\Ihits/ BC

Kcal = Oinel Nhits/pp = “peak (44)

The results of the VDM scan during the spring is Keg = 113.3mb.

This calibration constant can then be inserted into Equation 40 and one obtains
Nhits/BC
In (l — —Ntlubes )
(45)
Gi nel In (1 — Kcaj )

Oing Ntubes

Lrc =

The denominator contains not only the calibration constant but also the inelastic cross section which
is not determined in the VDM scans. So a disadvantage with this method is that a value for the inelastic
cross section (from Monte Carlo calculations) have to be used when the luminosity is calculated.

However, another Taylor expansion gives:

Keal = ( Kﬁf "
cr.e||n<1—7>__6.eI \ Oinet Ntubes” 46
" Oinel Ntubes " ng’l n (46)
which means that to first order the inelastic cross section is cancelled out in the calculation:
Keal Keal
Gdln(l—7>___ 47
" Oinel Ntubes Ntubes (47)

That the dependence on the simulation is small can also be seen if one calculate cggs using the
inelastic cross section from Pythia (71.5 mb) and Phojet (76.2 mb). The result is gt = 3.88(3.87) for

Pythia (Phojet). These numbers are, however, both 2% higher than the value of 3.80 that was obtained in
the VDM scan.
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Figure 3: Comparison of hit functions with simulated data. Thelineisfrom Equation 37 after it has been
inverted and the points are from simulated data.

6 Systematic uncertaintiesin the Hit OR counting algorithm

Theline in Figure 3 shows Equation 37 after it has been inverted, i.e., it shows

Nhits/Bc = Niupes (1 — & eait) (48)
where Kcaip isacalibration constant give by:
N
Kcalib:|n<1_m> (49)
ubes

The main reason for the large difference between Equation 48 and the Monte Carlo datain Figure 3
ismost likely due to the assumption that the number of particlesin LUCID arefollowing a Poisson distri-
bution. This assumption is fundamental when Equation 34 is used to derive the logarithmic formula that
is used to measure the luminosity with the LUCID Hit-OR method. We know that the hit distributions
in both real and simulated data are not Poisson distributed. This does not prove that the particle distri-
butions are not following a Poisson but it is a clear indication that this is the case. So far we have not
verified the Poisson assumption with simulated data. Another argument against this assumption is that
LUCID detects a mixture of single and double diffractive events as well as inelastic events. We know
that these different processes creates different hit distributions with different average number of hits. A
sum of three Poisson distributions will not necessarily result in another distribution that is Poissonian.

The hit method will in addition suffer from the same migration effects that were discussed above for
the event counting methods. How much of the discrepancy in Figure 3 is due to migration and how much
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is due to the Poissonian assumption is at present not known.

Another complication is due to the fact that Equation 34 is true only for one bunch crossing. One
should therefore in principle use Equation 40 first on individual bunch crossings and then do the average
and not use a value of Nyis/pc that is obtained by averaging over all bunch crossing during aluminosity
block. One should with other words use the following expression when calculating the luminosity:

il (1 - 'ﬁl‘—b(;))
Lo = T (50)
BC  Ging IN (1— Wb;”)
This has, however, not been done in ATLAS because all rates are integrated over aluminosity block
and then transformed to averaged rates that are put into Equation 37. This problem could in principle be
corrected for in the LUMAT card but it has not been done.

In conclusion one can say that the formula used in the Hit-Or case is derived using very questionable
assumptions and one should not be surprised that the data corrected with Equation 40 do not give a
precise determination of the luminosity.

7 TheHIT AND Algorithms

7.1 Derivation of thealgorithm

In coincidence mode, there are two possibilities to detect an event with multiple interactions. A true
coincidence occurs when at least one interaction is detected simultaneously in both modules. A fake
coincidence occurs when no interaction is detected simultaneously in both modules, but at least two
interactions are separately detected in different modules.

In coincidence mode, the average number of detected particles in events with n interactions is the
sum of two contributions:

1. the event contains at least one interaction which is detected in both modules, together with any
number of interactions which are only detected in module A and not in C, and vice versa;

2. the event contains 0 interactions detected in both modules, together with at least one interaction
which is only detected in module A and one which is only detected in module C.

The average number of particles corresponding to Terms| and Il isthe sum of the probability of each
configuration times the corresponding number of detected interactions, times the number of particles per
detected interaction.

Definitions  Four exclusive definitions of average number of particlesin the whole detector per detected
interaction are used:

Nt/ pps no. of particles per detected interaction in A if there are no hitsin C

N;grt ops no. of particles per detected interaction in C if there are no hitsin A (50)
[])-;rt op no. of particles per detected interaction if there are hits in both modules

Npart)ppe | NO- OF particles per detected interaction if there are hits in one module but not both

Interactions that did not produce any particlesin LUCID are not used in these averages. Thisissym-
bolised with a*. These averages will by definition be large than one (or two in the case of a coincidence
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requirement).

The probability of each configuration is evaluated by using the exclusive probabilities to detect an
interaction defined above (o1, P10, P11 and poo), together with the exlusive probability to detect an
interaction in one module, but not in both (p«or = Po1 + P10). One can define a second set of average
number of particles that are averaged also over those interactions that do not have particelsin LUCID:

gelm op | = p(JlNgallrt ops no. of particlesin A if there are no hitsin C
Néé’n o | = ploN;grt ops no. of particles in C if there are no hitsin A (52
Noart/pp | = P1tNGa/ops no. of particles if there are hitsin both modules
XOR — XOR : : o
Npart op | = pXORNpart ops | NO- of particlesif there are hitsin one module but not both
Given that pmNSin Jpps is the number of particles registered in the whole detector when the inter-

action is detected in module A only and ploNégrt Jpps is the number of particles registered in the whole
detector when the interaction is detected in module C only, the sum of these Terms gives the number of
particles registered in the whole detector when the interaction is detected in module A or in module C

: XOR .
but not in both (pXORNpart/pp*)'

XOR o1 10
PxoRNpert) pp- = PotNgart/pp- + P10Npart /pp. (53)

One can aso introduce a set of inclusive average number of particlesif there are particlesin LUCID:

Nf)\art op | NO- of particles per interaction detected in A (regardless of C)
Ngan op | NO- of particles per interaction detected in C (regardless of A) (54)
Nggf’ opr no. of particles per interaction detected in both modules

And another inclusive set where one has averaged also over interactions with no particlesin LUCID:

Néan op | = ,sANS\art op* no. of particles per interaction in A (regardless of C)

C _ C . . . .
Npart op | = ,sCNpart op* no. of particles per interaction in C (regardless of A) (55)
Nﬁa’\ﬁ{j op | = EAND Nﬁa’\ﬁ{j o no. of particles per interaction in both modules

Term | Suppose n interactions occurred in an event, Term | can be written as:

n n n—k o /n—k
=2 plil(k> [Z Pxor(1— Pxor — P11)" I( | >] [kNé;rt/pp*+|N;(a?5pp*] (56)
k=1 =0

The first contribution consists of k interactions detected in both modules, | of the remaining n— k
interactions detected in only one module and the remaining n — k — | interactions undetected.

The probability of detecting k interactions in both modules is djl. The probability of detecting
| interactions in only one module is p,og. The probability of not detecting n—k — I interactions is
(1 pxor— P11)" .

Binomial factors are used to account for all permutations of k out of ninteractions and | out of n—k
interactions.

The average number of particles given by k interactions detected in both modulesis kl\g;rt Jpp while

that of | interactions detected in one moduleisINJOF .
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Term Il Suppose n interactions occurred in an event, Term |1 can be written as:

: n—Kk
: :kzlpgl< ) Zplo o I( | )] [KNgart, pp+ + I Naart -] (57)

The second contribution consists of k interactions detected in module A but not in C, | of the re-
maining n— K interactions detected in module C but not in A, and the remaining n— k — | interactions
undetected.

The probability of detecting k interactionsin module A is ;. The probability of detecting | interac-
tionsin module C is py,. The probability of not detecting n—k— | interactions is %"

Binomial factors are used to account for all permutations of k out of ninteractions and | out of n—k
interactions.

The average number of particles given by k interactions detected in both modulesis kl\f)’;rt Jpps? while

that of | interactions detected in one module isING /..

Sumover |  Thel-sumsin Equations 56 and 57 can be evaluated by means of the binomial theorem:

o (n=KkK _
kN part/pp*z Pxor (1— Pxor— P12)" ¥ I( | )kNpan/pp*(l—pll)” ‘ (58)
n—k
F)J(a?tR/pp*zl Pxor (1— Pxor— P11)"" k|< | ) = Nt ppe(N—K)Pxor(1— 1) (59)
—k . .
part/pp* z plopn K I( | ) - I(Npart/pp* [(p00+ plO)n k— pgok (60)

n—k ke
part/pp*zlplo pn k= I( | > Npart/pp*(n_k) plO(pOO+ plO)n k-1 (61)

Sum over k Equations 58-61 are used to eva uate the k-sums in Equations 56 and 57 by means of the
binomial theorem:

n
Ngart/pp- 2 kpfy (1 p1a)"™ k(k> = Npait/pp. Pran (62)

d n
Npart/pp* DXORZ,lnplil(l— pll)n_k_l(k> = N;)(a(j:’)tF\}pp* PxoRrRN [( > —(1- p11)n_1] (63)

1-pn
_NXO Z K (1 — pu)" M) _ _\XOR P11 (64)
part/pp* Pxor 2 P12(1— P « ) = ~Noart/ppPxoRNT— o
Noart/ pp- Z kPt (Poo + P1o)™ " <k> Npart /pp« Porn(Poo + Por + P1o)™™ (65)
Noart/ppe 2 kP61 PG (k> —NOart /pp- PorN(Poo + Por)"™ (66)
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(1—pu)"

— -t 67
oot P10 (Poo + P10) (67)

4 (N
Négrt/pp*Plog,lnp&(pooJr P10)" 1<k> = Nart/pps plon[

(1—pu)"?

68
Poo + P10 (68)

d (N
_Négrt/pp*plog,lkpgl(r)oﬁ P10)" 1(k> = —Niart/pp- P1oNPo1

Sum of Terms| and Il Using Equation 53, the sum of Equations 62-68 gives.

|+ 11 = Nzt pps PN+ Ngzry oo, Poin [1— (oo + Por)™ ] + Nogt o Pron [1— (Poo+ P1o)™ ] (69)

Poissonian sum The average number of particles per event in coincidence mode is given by the con-
volution of Equation 69 with a Poissonian of average u:

oo e_'u‘un
NQaNnD/BC: Y (1+11) o (70)
n=0 '
Given the relations:
< e Hun < kN
ngbn S =h and ng‘oﬁzek (72)

Equation 70 becomes.

Nt/ec = Noart/ppe P11t + Nzt /. Po1 it {1 _ e—u(plo+pn)} + N2, oo P10k {1 _ e—u(po1+p11)} (72)

Using the following relations:

01 _ NA _ NAND _ NA  _ NAND
Noert/pp Pt = Noart e €4 Nparg pp EAND = Ny /pp Npartg pp (73)
C AN AN

NC

= N part/pp ' part/pp

Npart /pp- P10 part/ pp- €€ ~ Noart) pp- EAND =

Equation 72 can be written as:

AND AND A AND -
Npart/sc = MNpart/pp 1 ( Noart/pp — Npart/pp (1—e) (74)

C _ NJAND _ o UE
TH Npart/pp Npart/pp (1—eHe)

The number of particles per event can be extracted from the number of hits per event as it was done
for the single side mode:

Nhi
Npart/Bc = —NiupesIn (1— NI:S:ZC> (75)
u

Once again the calculation has to be done for each BC and then averaged.

14



